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Analysis and Design of Full-Band
Matched Waveguide Bends

Mauro Mongiardo, Antonio Morini, and Tullio Rozzi, Fellow, IEEE

Abstract— Compact waveguide bends with low return loss
over the full waveguide band width are realized by placing
properly selected discontinuities inside the curve. The component
is designed by using an extremely efficient computer code which
employs the local modes approach to analyze curved sections,
while discontinuities are rigorously accounted for by considering
their multimode equivalent circuit. A simple technique to select
the appropriate matching elements is described and examples of
full-band matched bends are provided.

1. INTRODUCTION

AVEGUIDE BENDS are crucial for sophisticated mi-

crowave systems such as radar seekers, satellite beam
forming networks, etc., [1]-[3], where, in order to minimize
space requirements, it is often required to realize compact
bends, i.e., curves with short radii, but nevertheless exhibiting
low return loss over a wide band. Wide-band matched (WBM)
bends were first introduced by de Ronde [4] by inserting
suitable matching elements (ME) such as stubs, notches, etc.,
mainly on an experimental basis.

While a considerable amount of literature addresses the full-
wave analysis of bends [5]-[11], apart for a few cases [12],
[13] there is a lack of information on the design of compact
WBM bends. Moreover, most current approaches do not coex-
ist favorably with the commonest method used for analyzing
interacting discontinuities. This method, in fact, is based on the
use of the generalized scattering matrices (GSM), considering
all the accessible modes relative to each discontinuity. It
would be appropriate, therefore, to characterize the bend too
in terms of its GSM. As an example, numerically oriented
methods, although useful for analysis purposes, fail to provide
insight on how to select suitable ME, while their limited
numerical efficiency prevents their use in the optimization
routines necessary to design WBM components.

In this contribution we present a method to design compact
full-band matched (FBM) bends, which are easy to manufac-
ture, avoiding the use of trimming elements and providing a
fairly robust design from both the electrical and mechanical
viewpoints. The proposed matching method is based on the
analysis of bends under even and odd excitation. It is noted
that, by introducing a thin metal iris in the symmetry plane
of the bend, only the even susceptance is changed. By taking
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advantage of the bend frequency response, it is possible to
properly adjust the metal iris in such a way as to alter the
even susceptance and to achieve full band matching.

In addition, we also introduce the combination of the lo¢al
modes concept [14] and that of accessible modes, that is partic-
ularly well suited to account for the presence of discontinuities
and ME’s inside the bend. Thanks to its numerical efficiency,
this approach is an ideal candidate for CAD purposes.

The next two sections illustrate the local modes analysis
of H-plane and E-plane bends, respectively. In both cases it
is seen that the presence of the bend causes modal coupling
which is rigorously described by a system of generalized
telegrapher’s equations. The solution of the latter system is
described in Section IV, while Section V describes some
results for the unmatched bend. The last section, Section VI,
illustrates the technique for FBM bends and provides some
examples.

II. ANALYSIS OF H-PLANE BENDS BY LOCAL MODES

Let us consider a rectangular waveguide H-plane bend of
angle #, as shown in schematic top view in Fig. 1, under
fundamental TE;p mode incidence. This mode has no vari-
ation in the y-direction and its only field components are
Ey,, H,, H.. The method of local modes describes the ficld
in each section of the bend by means of a superposition
of modes of the locally straight waveguide. In this way, the
electric field in the bend is expressed as a superposition of the

modes ¢, (z) = \/g sin 2Z2 in the following manner
Ey(xa Z) = Z Vn(z)ﬁbn(x) (1
n=1

while the magnetic field is given by
Ho(z,2) ==Y In(2)¢n(2). )
n=1

In practice, sums are truncated after few terms, say N, since
the bend is a smooth discontinuity. While modes in a straight
section are independent of each other, in curved sections they
couple and their propagation is described by the following
system of equations

N
0V = —AmIn = Y_ Bmnln 3)
n=1
N
8¢Im - "“Cmvm - Z DmnVn (4)
n=1
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Fig. 1. H-plane bend showing coordinate systems used.

where the coefficients Ay, Bn, Crn, Dimn, have the simple
close-form expressions derived below.

A. Coefficients of the Telegrapher’s Equation

In each section of the bend the field may be obtained from
a potential 1 solution of the Helmholtz’ equation expressed in
cylindrical coordinates, i.e.,

1 1
a2+—a) + =
(” p”¢ p?

From which the transverse field components are obtained in
cylindrical coordinates, as

Ey = jupyd
1
Hp - —p—aw/)

In order to find the actual form of the field we make use of
the expansion (1) and (2). Note that in these expansions the
¢n(x) constitute a complete, orthonormal, basis, but they are
not the modal basis for our curved section. In fact, the ¢,,(z)
are the modal function of the straight waveguide; as such they
satisfy the following wave equation

aian + k2¢n = /B'Z()ZSTL

where 3, is the propagation constant.
With reference to Fig. 1, the relationship between the cylin-
drical and the rectangular coordinate system is provided by

29 + k*p = 0. (5)

Q)

N

1
0, = =0,
p e
p=r+x
0, = 0,. ®)

By substituting the expansion (1) and (2) into (6) and (5) it is
possible to obtain the two generalized telegrapher’s equation
linking voltages and currents along the bend as described in
the following.

First Generalized Telegrapher’s Equation: By substituting
(1) and (2) into (6), noting that H, = H,, yields

N N
Z 8¢Vn¢n = —Jwpp Z In¢n
n=1 n=1

By taking advantage of the orthonormality of the basis func-
tions ¢y, (9) provides the first of the generalized telegrapher’s
equations, i.e.,

€))

N
—jwprl, —jwu Z H, .1,

n=1

0pVin = (109)
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where we have introduced the following coupling terms

Equation (10) clearly shows that mode coupling takes place in
the bend. In particular, for H-plane bends the coupling terms
H,., are given by

2 a
H,.,= —/ zsin <mx) sin (Em) dz
a Jo a a

%—m{cos(mﬁ-n)w—l] m=mn
= W[COS (m — TL)’/T — 1] (12)
—W‘:Ln)g[cos(m—l—n)n—l] m#n

Second Generalized Telegrapher’s Equation: In order to
derive the second generalized telegrapher’s equation it is
expedient to note that, by using (8) the first term in (5) may
be written as

2 1 _ a2 1
while, by using (6), the second term in (5) yields
| N
p—82w = 19,8, = =22 %oln(@)dn(x).  (14)

After inserting the two above equations into (5) and by using
(7), we get

Zr+xﬁ2V¢n+ZV Z

Taking advantage of mode orthonormality, one finally obtains

- (15)

o, _

m /82 fm’n
5% D Vm —JZ( Hpn + u)Vn (16)

where the following coupling integral is introduced

¢ smr nw
sin | —x ) cos | —z )dz
0 a a

2 nw

(g 900 _
= (95 ) = 217

0 m=n
_ (=Yt (m—n —(—1Y"" " {m+n
(17)

By rewriting (10) and (16) and using for brevity the quantities
A = jwur

/32
Wi

Bpn = jwopHpn

2
C = jm" Dmn—y<ﬁ Hmn+fm;) (18)

we get the system of (3) and (4). This gives the differential
relationships between voltages and currents expressing the
amplitude of the electric and magnetic fields, respectively,
along the bend. The solution of the telegrapher’s (3), (4) is
obtained as described in Section IV.
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Fig. 2. E-plane bend showing coordinate systems used.

III. ANALYSIS OF E-PLANE BENDS BY LOCAL MODES

For the analysis of E-plane bends it is expedient to derive
the field from an LSE Hertzian potential £, which, in each
section of the bend, is represented by a summation of local
modes, each satisfying “local” boundary conditions. Referring
to the two coordinate systems shown in Fig. 2, the global one
(p,,x), and the local one (y, z,z), we express the Hertzian
potential as

Pn(,y,2) = Y an(2)n(y)o(z) (19)
n=0,1
where
2 .7
p(x) = \/;sm Ea: 20y

expresses the z-dependence that is always the same along the
bend, while
€n nmw

Yaly) = %COS 7Y = 1, e=v2 Q1
The coefficients a,,(z(¢)) must be chosen in such a way that
the potential 1);, satisfies the wave equation, expressed in the
cylindrical coordinate system associated to the bend
1 1

(a}j + ;a,, + p—2—83, + ﬂfo) ¥p = 0. 22)
Now, from the property of the expansion to be local it follows
that

Buthn = —am = Y b)) @)
n=0,1
By noting that
1
p=r+y 0,=0, ;8¢:62 24)

we obtain the following system of coupled equations in the
unknown coefficients a, (@), bn(®)

o0

Z ((r+ Y)Pm, Pn)bn
n=0,1

> T2 + v)¥m, Yn)an
n=0,1

_Z'l/)'ﬂn

n=0,1

Oplm =

Il

Bpbm,

(25)
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Where prime denotes derivative and I',, denotes the propa-
gation constant of the LSE;,, mode. In the above equation
the inner product is defined as (f,g) = f: fgdy. By using
standard definitions, the previous equations are cast in terms
of normalized modal voltages and currents i,,, v, as

O, v —mem-l-z
n=0,1 ‘P I‘

(Y, Yn)in

o0

n; m (Y, WL Yin

Bgim =Tt + D VT Ly, $n)vn.  (26)
n=0,1

These are again in the form of generalized telegrapher’s
equations.

IV. SOLUTION OF THE TELEGRAPHER’S EQUATIONS

By introducing an appropriate matrix [r] the generalized
telegrapher’s equations (3), (4) for the H-plane bend and
(26) for the E-plane bend, respectively, are rewritten in the

following way
v v

For a bend of angle § and constant radius the matrix [7] is
a constant, thus allowing solution of the above system in the

form
[V]
.| =e
i

where the subscript 0 in the r.h.s. term stands for the voltage
and current distribution at ¢ = 0. The matrix eflrl e, the
ABCD transmission matrix of the bend, is computed by using

the formula
A B .
C D
no=

= (O[r
Z(H)
0,1

In order to overcome any numerical instability arising from
the use of the transmission matrix with several modes below
cut-off, it is expedient to compute the solution for a small angle
Ap = 2%, and then to transform the transmission matrix into
the scattering matrix. Calling Sa, the latter , the generalized
scattering matrix of the entire bend, Sy is given by the formula

So = FM(Say). (30)

@7

(28)

29)

Where the operator F' computes the scattering matrix resulting
from cascading two identical junctions. This approach, apart
for being numerically efficient and very stable, is also well
suited to deal with matching elements inside the bend. In
fact, it is easy to analyze the effects of a discontinuity by
describing the latter in terms of its accessible modes. Note
that, by numerically solving (27), the local mode technique
also allows to consider bends with varying angle of curvature,
as well as serpentines, etc.
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Fig. 3. Reflection coefficient of an E-plane 90° bend of radii R = r+4b/2 =
10 mm in WR75. Crosses refer to the experimental results of [10].

V. RESULTS FOR UNMATCHED BENDS

FORTRAN computer codes, based on the local modes
approach, have been developed and tested against published
data for nnmatched bends both in the F- and H-planes. For the
latter, several comparisons with experimental data and other
numerical solutions have been already reported in the digest
version and are not considered here, where we concentrate on
E-plane bends.

A. Convergence Analysis

In Fig. 3 our numerical results are compared with those
measured by [10]. It is apparent that a very good agree-
ment is present. It is also noted that fairly good results are
obtained by considering the coupling of just rwo modes. In
fact, when using four modes only modest differences are
noticed. Also, we checked the method by further increasing
the number of modes, finding responses indistinguishable from
those obtained considering 4 modes.

Since similar conclusions also hold for the H-plane case,
it seems fair to say that, in order to obtain very accurate
results, less than 4 modes need be considered. Moreover, fairly
accurate results are obtained by considering just two modes,
provided that one or more resonances do not occur over the
band. In that case, the first two modes cancel each other and the
role played by the higher order modes can become significant;
This occurs, for instance, for the 180° bend shown in the
following: the model employing two local modes can only
aupply a semiquantitative idea of the regponse, but an accurate
determination of the resonance requires at least 4 local modes.

B. Effect of the Bend Angle

The effects of the bend angle on the reflection coefficients
have been investigated as shown in Figs. 4 and 5. It is apparent
that, even for the small radius of curvature considered, very
small reflections arise when the bend angle is less than 30°.
For larger angles the reflected power increases, thus making
necessary the presence of matching elements in order to
compensate such reflections. Similarly to the H-plane case,
it is noted that, for a particular combination of radius and
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Fig. 4. Reflection coefficient of E-plane bends of radius R = r + b/2 =
6 mm in WR75 for different angles.
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Fig. 5. Reflection coefficient of E-plane bends of radius R = r + /2 = d
6 mm in WR75 for different angles.

bend angle, we may have a very low reflection coefficient.
As an example the latter occurs in Fig. 5, for a radius of
6 mm and a bend angle of 180° at the frequency of 12.4
GHz. The knowledge of this angle is of some relevance since
it may allow the design of rather complicated network without
return losses due to bends. However, it is clear that the bend is
matched only over a modest bandwidth. In order to obtain full-
band matched bends, it is necessary to properly insert matching
elements as described in the next section.

VI. FULL BAND MATCHED E-PLANE BENDS

The study of the 90° bend under even and odd excitation,
with respect to the symmetry plane, provides considerable
insight into the problem of matching. In fact, it is found
that the normalized input reactances X. and X,, for the
even (magnetic wall in the symmetry plane) and the odd
case (electric wall in the symmetry plane), respectively, are
approximately related to each other, over the entire band, via
the following formula

(3D
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Fig. 6. Even and ddd reactances as obtained by closing the bend at its
midsection by a magnetic and electric wall, respectively.

This relationship is shown in Fig. 6 for the geometry under
consideration, i.e., for a 90° bend in WR75 of radius R =
r+ b/2 = 6 mm, for which x = 0.27. For other types of
bends, i.e., for different radii or angles, a similar relationship
is also seen to hold, apart for the different values assumed
by x. :

Since a symmetric junction is matched when X, = —1/X,
and by observing that the insertion of a thin conducting sheet,
of any shape, in the symmetry plane of the bend changes just
the even reactance, X, we may adjust this even reactance by
inserting a thin diaphragm in the middle of the bend.

In order to determine whether the nature of the matching
element is to be inductive or capacitive, we have modeled the
bend as an equivalent transmission line of electrical length ©
simce

1
X =——. 32
tan © (32)
After replacing the open circuit with a small admittance j By,
the even input reactance in the matched situation, X s,

becomes approximately

X _»_1—BLtan®~ 1 1+ tan?0©
MT T B; +tan® | tan®© tan®®
1+ tan?@©
=X, e 33
+BL tan? © (33)

Therefore, since X.ps must be larger than X, in order to
match the bend, it follows that By has to be positive and
consequently the diaphragm is capacitive.

The last formula provides also a tool for calculating By,. In
fact, by imposing that

XeM = _‘1/Xo
we obtain

X
= 34
T+ (1/X, + 07 B
As already noted, in our case, x = 0.27 therefore By, ~0.137
at midband. A first estimate of the height of the matching
septum, can be obtained by [5, formula 2.c, p. 219], here

By,
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Fig. 7. Normalized admittance of a thin capacitive diaphragm.
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Fig. 8. A 90° matched bend and its multimodal equivalent circuit.

reported in Fig. 7, providing a values of normalized height
d/b = 0.183, corresponding to 1.75 mm for WR75 waveguide.

Unfortunately, the circuit for a capacitive diaphragm pro-
vided by Marcuvitz, can not be used in conjunction with
the multimode bend model, since the former considers as
accessible just the propagating mode. In order to take full
advantage of coupled mode analysis it is convenient to employ
the equivalent circuit given in [15] which, as shown in Fig. 8,
considers two accessible modes. Accordingly, the equivalent
network of the 90° matched bend, upper figure in Fig. 8, is
as represented by the equivalent circuit in the lower figure.
This network can be easily analyzed by means of the coupled
modes approach and the diaphragm height can be adjusted
in order to improve. the result provided by the Marcuvitz
equivalent circuit. By doing so, the FBM 90° bend shown in
Fig. 9 is obtained. From the latter figure it is apparent that low
return loss (less than 30 dB) is achieved on the whole band of
WR75 waveguide. For angles larger than 120° this matching
procedure cannot be applied, since the relationship between
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Fig. 10. Reflection coefficient of a matched E-plane 180° bend of radius
R =7+ b/2 = 6 mm in WRT75.

the even and odd reactances of the bend, given by (31) does
not hold. Good results can, however, be obtained by repeating
the procedure on fractions of the total bend angle. For istance,
in order to match a 180° bend, it is expedient to divide the
bend into two bends of 90° and place a matching septum in
the midplane of each. An example of the latter arrangement
and relative return losses over the whole band is provided in
Fig. 10.

Finally, it is worth mentioning that we have also checked
the matching technique in the actual case of finite-thickness
septa, simulating by a FDTD code an abrupt E-plane corner,
matched by a finite thickness septum, obtaining, even in that
more critical case, results comparable with those presented
here.

VII. CONCLUSION

Full-band matched (FBM) waveguide bends with small radii
of curvature have been realized by placing matching elements
(ME) inside the curve. The design of FBM E-plane bends has
been accomplished by using capacitive diaphragm(s) inside
the curve as ME. A multimodal analysis of this configuration
has been performed by using the local mode theory and the
multimodal equivalent circuit of the diaphragm. This approach,
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while being extremely simple to implement, features numerical
efficiency.
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